American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 43 / Number 2

Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

Larry R. Grisham

Fusion Science and Technology / Volume 43 / Number 2 / March 2003 / Pages 191-199

Technical Paper

The feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor is evaluated. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative-ion current densities. With regard to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive-ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive-ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to <5% while traversing a 3-m path would require a chamber pressure of no more than 1.3 × 10-5 torr. However, it appears that substantial improvements in the beam spot size on target might be achieved at pressures a factor of 10 or more higher than this. Alternatively, even at still higher chamber pressures that would strongly ionize atomically neutral beams, the negative-ion approach may still have significant appeal, since it precludes the possibly challenging problem of electron contamination of a positive-ion beam during acceleration, drift compression, and focusing.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement