ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Mukio Fukuhara
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 128-133
Technical Note | doi.org/10.13182/FST03-A254
Articles are hosted by Taylor and Francis Online.
From symmetric meson theory, the formation of helium nucleus from two deuterons, i.e., fusion, requires necessarily a direct force due to exchange of two neutral pions, which do not actually compose the deuteron nucleus. The neutral pions are provided by two photons, which are produced by emission of excited collective electrons derived from the palladium atoms. The introduction of the pions makes it possible to reduce remarkably an internuclear distance, enhancing the fusion rate for helium formation. The dynamic interaction is interpreted as the result of condensation of deuterons into octahedral interstitial sites by electrolysis and contraction of the deuteron octahedra around the Pd10- atom with the help of the electron-phonon charge-density wave coupling.