ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Renzo Carta, Stella Dernini, Anna Maria Polcaro, Pier Francesco Ricci, Giuseppe Tola, Giancarlo Pierini
Fusion Science and Technology | Volume 15 | Number 1 | January 1989 | Pages 55-63
Technical Paper | Tritium System | doi.org/10.13182/FST89-A25324
Articles are hosted by Taylor and Francis Online.
Recent studies have given lower and lower values for the solubility of hydrogen isotopes in the eutectic 83Pb-17Li alloy, a candidate breeding material for the blanket of fusion machines. Therefore, thermodynamic stability for the gaseous phase under the high pressure reached at the bottom of the alloy containers can be achieved even for very low tritium concentrations in the liquid phase. A mathematical model to determine when tritium bubble nucleation occurs at an appreciable rate is presented. Considering the design parameters and the operating conditions of the Next European Torus project, it is foreseeable that the tritium generated in the blanket could evolve almost completely in the gaseous phase by forming bubbles at the top of the containers even if acceptable values of the tritium inventory (<100 g) and permeation (∼0,5 g·day−1) are maintained. This situation can be achieved if the molten alloy wets the metallic surface poorly and if the fouling on the exchanger side in contact with the cooling water causes a moderate increase of the resistance to tritium diffusion through the walls. Due to a lack of experimental data, a few assumptions are adopted, but the usefulness of the results obtained is not affected.