Power transport to the Poloidal Divert or Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50% of the total plasma heating power. The measured peak front face midplane temperature was 1500°C, corresponding to a peak surface power density of 3 kW/cm2. This power density implies an effective parallel power flow of 54 kW/cm2 in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements. Symmetric and asymmetric thermal loads were observed. The asymmetric heat loads were predominantly skewed toward the respective ion drift directions for both co- and counterinjected beams. The results of transport calculations are consistent with the direction and magnitude of the observed asymmetries.