ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Reed J. Jensen
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 481-485
Overview | doi.org/10.13182/FST87-A25029
Articles are hosted by Taylor and Francis Online.
An overview of KrF laser issues for fusion in the laboratory environment is presented. In this fusion method, lasers are used to compress the deuteriumtritium fuel in the pellet to several thousand times its initial density. Krypton-fluoride lasers offer favorable wavelength, bandwidth, pulse-shaping, efficiency, and high-repetition rate properties for achieving fusion. Large-scale demonstration plants for fusion, however, rely on the improvement or resolution of significant issues: front-end capabilities, amplifiers and amplifier scaling, optical engineering for the ultraviolet, alignment systems, kinetics, beam quality, target coupling, cost, and overall system factors. We feel that KrF lasers may be able to meet the required inertial confinement fusion driver characteristics, driver-target coupling particularities, and capsule physics issues necessary to achieve the final conditions in the implosion that will produce net energy release from the fusion reaction.