ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hiroshi Takahashi
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 328-339
Technical Paper | Plasma Engineering | doi.org/10.13182/FST86-A24719
Articles are hosted by Taylor and Francis Online.
The reactivation process of a muon that is stuck to an alpha-particle produced in muon-catalyzed deuterium-tritium (D-T) fusion is studied for the different isotope targets p, d, and t by using the Born approximation calculation of charge-transfer cross sections. The isotope dependence is small compared with the large isotope effects observed by Jones et al. Our calculated density dependence is very similar to that of Bracci and Fiorentini, and it is not as large as that observed by Jones et al. The enhancement of muon reactivation by application of a high-intensity electric field to the target is studied. Even when the very high electrical field of 40 MV/cm is applied to a liquid-hydrogen target, the enhancement is small because of the isotropic emission of an alpha particle in unpolarized D-T fusion. Even in polarized D-T fusion, the enhancement is small.