ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
F. Saint-Laurent, G. Martin, T. Alarcon, A. Le Luyer, P. B. Parks, P. Pastor, S. Putvinski, C. Reux, J. Bucalossi, S. Bremond, Ph. Moreau
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 711-718
Technical Paper | doi.org/10.13182/FST13-A24090
Articles are hosted by Taylor and Francis Online.
Runaway electrons (REs) generated during disruption are identified as a major issue for ITER and reactor-size tokamaks. Such electrons are produced when a large toroidal electric field is generated in the plasma. This field continuously accelerates low-collisional electrons up to relativistic energy. Such a large electric field occurs both in the plasma core at thermal quench of the disruption when the current profile flattens due to high magnetohydrodynamic activity, and during the current quench (CQ) of a disruption. These REs may initiate secondary RE generation during CQ due to the avalanching process, leading to a multiplication of these relativistic electrons. The impact of REs on the first wall is well localized due to their very small pitch angle. The energy deposition may be huge, and plasma-facing component damages are often reported.Mitigation techniques are thus mandatory to suppress RE formation or/and reduce their heat loads. Two ways are explored on Tore Supra: (a) suppressing the RE beam formation and avalanche amplification by multiple gas jet injections at CQ and (b) controlling the RE beam when it is formed and increasing the collisionality to slow down the relativistic electrons.