The electron cyclotron range of frequency (ECRF) system was designed and operated on the JT-60U to locally heat and control plasmas. The frequency of 110 GHz was adopted to inject the fundamental O-mode from the low field side with an oblique injection angle. The system is composed of four 1 MW-level gyrotrons, four transmission lines, and two antennae. The gyrotron is featured by a collector potential depression (CPD) and a gaussian beam output through a diamond window. The CPD enables JAERI to drive the gyrotron under the condition of the main DC voltage of 60 kV without a thyristor regulation. The gaussian mode from the gyrotron is effectively transformed to HE11 mode in the 31.75 mm diameter corrugated waveguide. About 75% of the output power of the gyrotrons can be injected into plasmas through the waveguides about 60 m in length. There are two antennae to control the deposition position of the EC wave during a plasma discharge. One is connected with three RF lines to steer the EC beams in the poloidal direction. The other is to control the EC beam in the toroidal and poloidal directions by two steerable mirrors.

On the operation in 2000, the power of 1.5 to 1.6 MW for 3 s was successfully injected into plasmas using three gyrotrons. Local profile control was demonstrated by using the antennae. This capability was devoted to improve the plasma performance such as high Te production more than 15 keV and suppression of the MHD activities. In 2001, the fourth gyrotron, whose structure was improved for long pulse operation, has been installed for a total injection power of ~3 MW.