ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Meta’s new nuclear deals with Oklo and TerraPower: The details
Tech giant Meta is making big bets on TerraPower and Oklo. With the former, the hyperscaler could support the deployment of up to eight new reactors. With the latter, it could be as many as sixteen.
For both start-ups, Meta hopes its demand bolsters supply chains, the workforce, and the nuclear industry generally. For itself, the company is aiming to secure more generation to cleanly power its AI ambitions.
N. Hosogane, H. Ninomiya, M. Matsukawa, T. Ando, Y. Neyatani, H. Horiike, S. Sakurai, K. Masaki, M. Yamamoto, K. Kodama, T. Sasajima, T. Terakado, S. Ohmori, Y. Ohmori, J. Okano
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 368-385
Technical Paper | doi.org/10.13182/FST02-A234
Articles are hosted by Taylor and Francis Online.
The design of the JT-60U tokamak, the configuration of the coil power supplies, and the operational experiences gained to date are reviewed. JT-60U is a large tokamak upgraded from the original JT-60 in order to obtain high plasma current, large plasma volume, and highly elongated divertor configurations. All components inside the toroidal magnetic field coils, such as vacuum vessel, poloidal magnetic field coils, divertor, etc., were modified. Various technologies and ideas were introduced to develop these components; for example, a multi-arc double skin wall structure for the vacuum vessel and a functional poloidal magnetic field coil system with taps for obtaining various plasma configurations. Furthermore, boron-carbide coated carbon fiber composite (CFC) tiles were used as divertor tiles to reduce erosion of carbon-base tiles. Later, a semiclosed divertor with pumps, for which cryo-panels originally used for NBI units were converted, was installed in the replacement of the open divertor. These development and operational results provide data for future tokamaks. Major failures experienced in the long operational period of JT-60U, such as water leakage from the toroidal magnetic field coil, fracture of carbon tiles, and breakdown of a filter capacitor, are described. As a maintenance issue for tokamaks using deuterium fueling gas, a method for reducing radiation exposure of in-vessel workers is described.