American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 4 / Number 2P2

Fusion Breeder Reactor Design Studies

R. W. Moir, J. D. Lee, M. S. Coops, F. J. Fulton, W. S. Neef, Jr., D. H. Berwald, R. B. Campbell, B. Flanders, J. K. Garner, N. Ghoniem (Consultant, UCLA), J. Ogren, Y. Saito, A. Slomovik, R. H. Whitley, K. R. Schultz, G. E. Benedict, E. T. Cheng, R. L. Creedon I. Maya, V. H. Pierce, J. B. Strand, C. P. C. Wong, J. S. Karbowski, R. P. Rose, J. H. Devan, P. Tortorelli, L. G. Miller, P. Y. S. Hsu, J. M. Beeston, N. J. Hoffman, D. L. Jassby

Fusion Science and Technology / Volume 4 / Number 2P2 / September 1983 / Pages 589-598

Fusion System Studies / dx.doi.org/10.13182/FST4-2P2-589

Studies of the technical and economic feasibility of producing fissile fuel in tandem mirrors and in tokamaks for use in fission reactors are presented. Fission-suppressed fusion breeders promise unusually good safety features and can provide make-up fuel for 11 to 18 LWRs of equal nuclear power depending on the fuel cycle. The increased revenues from sales of both electricity and fissile material might allow the commercial application of fusion technology significantly earlier than would be possible with electricity production from fusion alone. Fast-fission designs might allow a fusion reactor with a smaller fusion power and a lower Q value to be economical and thus make this application of fusion even earlier. A demonstration reactor with a fusion power of 400 MW could produce 600 kg of fissile material per year at a capacity factor of 50%. The critical issues, for which small scale experiments are either being carried out or planned, are: 1) material compatibility, 2) beryllium feasibility, 3) MHD effects, and 4) pyrochemical reprocessing.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement