ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
T. Uckan, E. F. Jaeger, N. A. Uckan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 507-512
Plasma Engineering | doi.org/10.13182/FST83-A22914
Articles are hosted by Taylor and Francis Online.
Transport simulation and modeling studies for the ELMO Bumpy Torus (EBT) reactor are carried out by using 0-D and 1-1/2-D transport calculations. The time-dependent 0-D model is used for global analysis whereas the 1-1/2-D radial transport code is used for accurate determination of density, temperature, and ambipolar potential profiles and of the role of these profiles in reactor plasma performance. Analysis with the 1-1/2-D transport code shows that profile effects near the outer edge of the hot electron ring lead to enhanced confinement by at least a factor of 2–5 beyond the simple scaling that is obtained from the global analysis. The radial profiles of core plasma density and temperatures (or core pressure) obtained from 1-1/2-D transport calculations are found to be similar to those theoretically required for stability.