ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Keiji Miyazaki, Shoji Kotake, Nobuo Yamaoka, Shoji Inoue, Yoichi Fujii-E
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 447-450
Blanket and First Wall Engineering | doi.org/10.13182/FST4-2P2-447
Articles are hosted by Taylor and Francis Online.
An experiment on electric potential and pressure drop for NaK flow in uniform trnasverse magnetic fields was conducted. A test channel was constructed using 45.3 mm (or 28 mm) I.D. and 1.65 mm thick 304-SS circular pipe in the NaK-Blowdown MHD Experimental Facility of Osaka University. The experimental range covered had a driving gas pressure <8 bar, an applied magnetic flux density: B0=0.3∼1. 75 T, a mean flow velocity of NaK: U0=2∼ 15 m/sec, a Reynolds number Re=8×l04∼6.2×l05 and a Hartmann number: Ha=740∼4150. A theoretical analysis is given on the basis of a uniform-velocity thick-wall model. Good agreement between the theory and the experiment were obtained both for the potential and for the pressure drop, except a small deviation of the experimental pressure drop towards values lying above the theoretical ones in a weak B0 and high U0 region (Ha2/Re <15).