ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
N.M. Ghoniem, D.H. Berwald
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 439-444
Materials Engineering | doi.org/10.13182/FST83-A22903
Articles are hosted by Taylor and Francis Online.
Lifetime estimates of blanket components are extremely useful during the design process of fusion reactor blankets. In this paper, we present a preliminary analysis for the performance of HT-9 in the blanket modules of a reference Tandem Mirror Hybrid Reactor (TMHR). We utilize the available data base for HT-9 as well as other ferritic alloys to develop approximate design equations for void swelling, the shift in the ductile-to-brittle-transition temperature (DBTT), and thermal creep rupture at high temperature. HT-9 is used in a relatively low temperature design (below 500°C) to give an allowable design stress on the order of 145 MPa for up to 10 operating years. A minimum structure temperature of 365°C is imposed on the design to ensure a good margin of safety against neutron embrittlement. As an added design feature, the moderate DBTT shifts are almost entirely eliminated by a 450°C anneal for 50–60 hours, once every year. The lifetime of the blanket is estimated to exceed 10 years, and is based on the maximum limit for total elastic plus inelastic strains.