ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Jack Hovingh
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 173-177
Hybrids and Nonelectric Applications | doi.org/10.13182/FST83-A22863
Articles are hosted by Taylor and Francis Online.
Performance of an inertial fusion system for the production of hydrogen is compared to a tandem mirror system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem mirror system if the inertial fusion energy gain ηQ > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem mirror system requires that ηQ > 17. These can be achieved utilizing realistic laser and pellet performances.