ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
K. Ushigusa, S. Ide, T. Oikawa, T. Suzuki, Y. Kamada, T. Fujita, Y. Ikeda, O. Naito, M. Matsuoka, T. Kondoh, A. Isayama, M. Seki, T. Imai, K. Sakamoto, N. Umeda, K. Hamamatsu, T. Fujii, K. Uehara, T. Yamamoto, Y. Miura, M. Kikuchi, M. Kuriyama, H. Ninomiya
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 255-277
Technical Paper | doi.org/10.13182/FST02-A228
Articles are hosted by Taylor and Francis Online.
Studies on noninductive current drive (CD) and development of an integrated steady-state high performance operation in JT-60 are reviewed. Experiments on lower hybrid current drive (LHCD) in JT-60 have shown a large noninductive current up to 3.6 MA, high current drive efficiency of 3.5 × 1019 m-2A/W, and a flexible current profile control. Basic studies on LH waves, such as an effect of accessibility condition, fast electron behaviors, and so on, in JT-60 have contributed to understanding LHCD physics. Significant progress in neutral beam current drive (NBCD) has been made in JT-60 by testing the performance of negative ion-based (N) neutral beam injection (NBI) (N-NBI). The CD efficiency of ~1.5 × 1019 m-2A/W and negative ion-based neutral beam (N-NB) driven current of ~1 MA have been demonstrated in N-NBCD. Strongly localized noninductive driven current by electron cyclotron current drive (ECCD) was identified with a fundamental O-mode scheme from a low field side injection. ECCD in JT-60 has shown CD efficiency of 0.5 × 1019 m-2A/W and EC-driven current of 0.2 MA. Modification of local current profile was demonstrated and was used for suppression of neoclassical tearing mode. Based on these developments, two integrated steady-state operation scenarios were developed in JT-60, which are reversed magnetic shear (R/S) plasmas and high p ELMy H-mode. In these operation regimes, discharges have been sustained near the steady-state current profile under full noninductive current drive (High p; HHy2 ~ 1.4 and N ~ 2.5 with N-NB, R/S; HHy2 ~ 2.2 and N ~ 2 with fBS ~ 80%). High performance plasmas with a high nDoETio and at high normalized density were also produced under fully noninductive condition in high p ELMy H-mode and R/S mode.