ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Y. Iwai, Y. Misaki, T. Hayashi, T. Yamanishi, S. Konishi, M. Nishi, R. Ninomiya, S. Yanagimachi, S. Senrui, H. Yoshida
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1126-1130
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22759
Articles are hosted by Taylor and Francis Online.
The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange (CECE) process was selected for the WDS. The design conditions are (a) tritium concentration of waste water: 3.7 × 1010∼3.7 × 1011 Bq/kg, (b) waste water flow rate: 20 kg/h (1100 mol/h), a net working rate: 300 days, annual capacity: 150 tons/year (c) tritium concentration in the H2 discharged to environment: 6.5 x 101 Bq/m3, (d) tritium concentration in the H2O vapor discharged to environment: 3.7 x 103 Bq/m3, (e) tritium concentration in the electrolyzer: ∼ 1.85 × 1013 Bq/kg. Tritium concentration in the electrolyzer is determined considering the lifetime of the electrolyzer which depends on tritium concentration. Design value of height of a unit (30cm) of water-hydrogen isotopic exchange column and the correlation between the column internal flow rates and the column diameter were determined based on similar system for Japanese advanced thermal reactor (Fugen) moderated with heavy water.