ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
D. Ducret, C. Laquerbe, A. Ballanger, J. Steimetz, V. Porri, J.P. Verdin, T. Pelletier
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1092-1096
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22752
Articles are hosted by Taylor and Francis Online.
The separation of hydrogen isotopes is an essential element for tritium processing systems. A new process invented at the Savannah River Site, has been developed at Valduc facility: Thermal Cycling Absorption Process. This system uses palladium packed in a column to absorb a stream of hydrogen isotopes. By repeated heating and cooling cycles, the hydrogen isotopes successively desorb into a capacity and go back onto the column. The thermal cycling creates differences in the Pd separation factor for the hydrogen isotopes inducing the concentration of tritium at one end of the column and the concentration of the lighter isotopes at the other end. This paper presents experimental results obtained with a full-scale facility which has been installed in a glovebox so as to treat weakly tritiated gases. Experimental data collected on this device working with several isotopic mixtures are presented and compared to simulation results.