ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Glugla, T.L. Le, S. Gross, D. Niyongabo, R. Lsser, K.H. Simon
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 969-973
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22729
Articles are hosted by Taylor and Francis Online.
The principal techniques developed by different research groups for the detritiation of primary gaseous wastes are altogether based on processes with multiple stages comprising at least one step involving heterogeneously catalyzed chemical reactions. While the permeation of hydrogen isotopes through palladium/silver membranes combined with heterogeneously catalyzed reactions were proven to be particularly suitable for highly contaminated gases, isotopic swamping in a counter current mode is the method of choice in ITER for the final detritiation and recovery of residual amounts of tritium. Since the catalyst employed to promote the isotope exchange reactions should not support methanation of carbon monoxide and carbon dioxide an attempt was made to design a highly selective exchange catalyst. Amongst the catalysts screened with methane - deuterium exchange and carbon oxide - methanation as test reactions a high temperature reduced palladium/silica (SiO2) catalyst was found to match the selectivity requirements. However, even though the palladium/silica catalyst shows very little activity for methanation, carbon monoxide was found to obstruct the isotope exchange reaction, whereas carbon dioxide does not show this unwanted effect.