ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
T. Tanabe, K. Miyasaka, M. Rubel, V. Philipps
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 924-928
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22720
Articles are hosted by Taylor and Francis Online.
In order to investigate tritium behavior in tokamak, we have measured surface distributions of deuterium and tritium on graphite limiter tiles used in TEXTOR under D-D operation by means of an ion beam analysis and tritium imaging plate technique, respectively. It was found that both distributions were quite different, i.e. deuterium retention was higher at the deposited area, whereas tritium retention was higher at the erosion dominated area. This is because tritium produced by the D-D reaction, initially having 1 MeV, did not fully lose its energy in the TEXTOR plasma and implanted into the plasma facing materials nearly homogeneously, whereas deuterium was codeposited with carbon and boron, the main impurities in the TEXTOR plasma. This is also confirmed by the finding that high level of tritium was detected beneath the deposited layer. Tritium distribution, however, was modified by the temperature increase due to plasma heat load. Thus the comparison of tritium profiles with the deuterium profile gives a large amount of important and new information on PMI, and may be used as a new diagnostic technique for PMI.