ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Kaname Kizu, Junichi Yagyu, Yoshitaka Gotoh, Takashi Arai, Naoyuki Miya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 907-911
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22716
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope release properties of boron coated carbon tiles from JT-60U were investigated through secondary ion mass spectroscopy (SIMS). X-ray photoelectron spectroscopy (XPS) analysis of boron layer made by He+B10D14 method with 43 nm in thickness showed that the B/(B+C) ratio was about 0.9. Hydrogen isotopes in the boron layer and in the carbon layer were released at above 573 K and 1023 K, respectively. This means that hydrogen isotopes in the boron layer on the carbon tiles in JT-60U are released at temperatures as low as 573 K. The He+B10D14 boronization method is clearly effective to attain the high purity deuterium plasma and the low recycling because this method does not introduce H during boronization process. Wall conditioning before boronization is important because hydrogen retained in the carbon is released during plasma discharge through boron coating.