ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
H. Oka, M. Nishikawa, T. Takeishi, J. Yamaguchi, M. Nishi, T. Hayashi, K. Kobayashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 658-662
Safety and Safety System | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22669
Articles are hosted by Taylor and Francis Online.
The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system, connection of perfect mixed flow type reactors and plug flow type reactors, and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. In this study we made a calculation code of the system effect using the serial reactor model where 304SS, aluminum, copper or graphite is used for the piping material. Comparison of the calculated value using this code gives the good agreement with the experimental data taken at the cooperative experiment using a box made of stainless steel type 304 in Tritium Processing Laboratory in JAERI and that is called as the Caisson. It is observed that the isotope exchange reaction between tritiated water in the air and surface water on the 304SS surface controls the tritium trapping performance at the room temperature although HTO/HT ratio is around 0.1 in this experiment.