ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
J. E. Klein
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 542-550
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22648
Articles are hosted by Taylor and Francis Online.
In-bed accountability (IBA), a steady-state, flowing gas calorimetric method, has been implemented for production measurement of tritium inventories in metal hydride storage beds utilizing a LaNi4.25Al0.25 metal hydride alloy. Six-point calibration curves have been completed for six, nominal 390 gram, and two nominal 1310 gram tritium metal hydride storage beds. The equations used to calculate inventory errors are derived and presented in the Appendix. Beds with the same amount of insulation gave similar IBA calibration curves and bed temperature versus tritium inventory results. Tritium IBA inventory measurement errors varied slightly with bed inventory and maximum values at the 95% confidence level ranged from 4 to 9 grams for the 390 gram beds (1.1 to 2.6%) and from 8 to 13 grams for the 1310 gram beds (0.7 to 1.2%). Comparison of other methods for determining inventories on the same beds (hydride pressure, hydride bed temperature, and hydride bed temperature rise above the glove box temperature) showed the IBA method gave the highest accuracy tritium measurements. These other inventory methods also showed greater variability in measurement error over the range of tritium inventories, van't Hoff plots of hydride bed pressure under steady-state IBA conditions revealed a reduction in hydride pressure after several months of tritium service compared to other beds without tritium exposure.