ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A.V. Golubev, M.M. Khabibulin, S.E. Misatyuk, Y.A. Belot, A.Y. Aleinikov, V.P. Kovalenko, S.V. Mavrin, V.N. Golubeva, I.I. Solomatin, T.A. Kosheleva
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 474-477
Environment | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22634
Articles are hosted by Taylor and Francis Online.
There are presented in the research results of HTO washout and the model of HTO atmosphere concentration in the vicinity of a long-term HT and HTO emission source. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150–300 m from the base of the source to minimize dry deposition on the precipitation collectors. To study dependence of scavenging of tritium on raindrops characteristics, an optical device was constructed and used to measure the distribution of the drop radii and velocities during the period of experiment. The washout model, used for assessments, takes into account dispersion, deposition and re-emission. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface. Gauss type formulae for permanent emission source is used to calculate HTO atmospheric concentration. Meteorological data are used as input parameters for modeling.