ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Shigeo Yoshida, Isao Murala, Akito Takahashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 432-436
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22626
Articles are hosted by Taylor and Francis Online.
Handling of a large amount of tritium and tritiated contaminants had been carried out many times repeatedly in the OKTAVIAN facility which is an accelerator of Cockcroft Walton type to produce 14 MeV fast neutrons by D-T reaction. To estimate the dose due to internal exposure following intake of tritium, the distribution of tritium concentration has been measured with the bioassay method and the liquid scintillation counting method by using bioassay samples in man such as urine, exhaled water and so on. On the basis of their many tritium concentration data accumulated in the OKTAVIAN facility until now, a new tritium metabolic model has been developed by modifying a conventional three-compartment model known as the most famous model. The present model was verified using measured data, and compared with other models proposed previously.