ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
M. Komuro, Y. Ichimasa, M. Ichimasa
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 422-426
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22624
Articles are hosted by Taylor and Francis Online.
The distribution of molecular tritium (HT) oxidation activity and HT oxidizing bacteria in 5-cm soil sections from the surface to 20 cm depth in natural and cultivated fields in Mito was determined in in vitro experiments. HT oxidation activity was the highest in the top section of the natural soil, about twice that of the top section of the cultivated soil, and decreased with depth. From the natural and cultivated soil sections, 195 and 969 isolated strains with HT oxidation activity were obtained, respectively. The distribution profile of the occurrence rate and the sum of oxidation activity of HT oxidizing bacteria in each soil section were consistent with that of HT oxidation activity in the soil section. Most of the HT oxidizing isolates, 84% for the natural soil and 94% for the cultivated soil, were actinomycetes, Gram-positive bacteria.