ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
Gennadij T. Razdobarin, Gianfranco Federici, Vladimir M. Kozhevin, Eugeny E. Mukhin, Vladimir V. Semenov, Sergey Yu. Tolstyakov
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 32-43
Technical Paper | doi.org/10.13182/FST02-A198
Articles are hosted by Taylor and Francis Online.
A technique based on laser-induced breakdown spectroscopy is proposed for detecting in situ dust on the plasma-exposed surfaces and in the grooves of plasma-facing components in the next generation of fusion devices (e.g., ITER). It is based on laser-induced ablation of wall material and spectral analysis of the laser spark flash-light collected by imaging optics and transmitted to the detection system. This could give space- and time-resolved information on the presence of dust or loosely bound films, their characteristic deposition patterns, elemental composition, and possibly their hydrogen content, without the necessity of breaking the machine vacuum. We have performed some simple proof-of-principle experiments to demonstrate the suitability of this technique, which might provide an effective nonintrusive in situ surface analysis method for surveying in-vessel dust accumulation in future fusion devices. The preliminary results are discussed, and some of the inherent advantages and difficulties of this method are highlighted. The usefulness of this technique to provide reliable information on the quantity of dust at the probed location still depends on the resolution of several aspects, which are the subject of ongoing experimental investigation. Areas of further research and development are identified, and some of the design issues to integrate this system in a next-step fusion device such as ITER are briefly discussed.