ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gennadij T. Razdobarin, Gianfranco Federici, Vladimir M. Kozhevin, Eugeny E. Mukhin, Vladimir V. Semenov, Sergey Yu. Tolstyakov
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 32-43
Technical Paper | doi.org/10.13182/FST02-A198
Articles are hosted by Taylor and Francis Online.
A technique based on laser-induced breakdown spectroscopy is proposed for detecting in situ dust on the plasma-exposed surfaces and in the grooves of plasma-facing components in the next generation of fusion devices (e.g., ITER). It is based on laser-induced ablation of wall material and spectral analysis of the laser spark flash-light collected by imaging optics and transmitted to the detection system. This could give space- and time-resolved information on the presence of dust or loosely bound films, their characteristic deposition patterns, elemental composition, and possibly their hydrogen content, without the necessity of breaking the machine vacuum. We have performed some simple proof-of-principle experiments to demonstrate the suitability of this technique, which might provide an effective nonintrusive in situ surface analysis method for surveying in-vessel dust accumulation in future fusion devices. The preliminary results are discussed, and some of the inherent advantages and difficulties of this method are highlighted. The usefulness of this technique to provide reliable information on the quantity of dust at the probed location still depends on the resolution of several aspects, which are the subject of ongoing experimental investigation. Areas of further research and development are identified, and some of the design issues to integrate this system in a next-step fusion device such as ITER are briefly discussed.