Two experiments showing continuous, real-time measurements of the radial convergence of a high-aspect-ratio aluminum flux conserver are presented. These results were obtained by measuring the compression of both axial and radial components of an internal low-intensity magnetic field. Repeatable flux conserver compressions of this type, uniform to 10:1 compression ratio, form a step toward achieving magnetized target fusion, where a plasma of appropriate temperature and density would be introduced into the flux conserver for compression to fusion conditions. While X radiographs show this compression ratio was achieved, the magnetic field probe signals were cut off earlier. Axial component measurements resulted in compression ratios of 7:1 and 6.3:1, for the first and second compressions, before the magnetic probe signals were lost. Radial component measurements disagree with the axial probe results. Although the discrepancy between axial and radial probe measurements is not completely understood, possible explanations are presented.