ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. C. Rivas, A. de Blas, J. Dies, L. Sedano
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 687-691
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19172
Articles are hosted by Taylor and Francis Online.
In this work, a model has been developed to calculate the neutron wall loading poloidal distribution in a generic tokamak plasma and vessel geometry on the basis of Monte Carlo simulation. Different neutron source radial profiles corresponding to advanced plasma scenarios have been implemented in this model, using combinations of step and parabolic functions.The model has been validated with data from state-of-the-art simulations of ITER wall loading, and a parametric study has been performed over different plasma geometries and radial profiles to check the variability of the neutron poloidal profile.The results show the effect of the different configurations on neutron wall loading. This model can be used for parametric studies for conceptual design or systems analysis activities.