ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Yasuyuki Itoh, Yoshiki Murakami, Satoshi Nishio
Fusion Science and Technology | Volume 40 | Number 2 | September 2001 | Pages 125-132
Technical Paper | doi.org/10.13182/FST01-A186
Articles are hosted by Taylor and Francis Online.
A feasibility study is presented of fast tokamak plasma terminations by means of high-Z impurity liquid jet injections in order to reduce the technological requirements of such terminations. The calculation was carried out by combining models described for the jet ablation and the current termination and taking into account the ionization of the jet material exposed to generated runaway electrons. The liquid jet was assumed to fragment and thus to deposit more massive impurity ions in the plasma. Although argon or krypton jet injection generates the runaway electron current, it decays in several hundred milliseconds with ionization of the residual jet material. These high-Z impurity jet injections would also be applicable for terminating or reducing the runaway electron current tails generated by major plasma disruptions.