ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Thomas J. Dolan
Fusion Science and Technology | Volume 40 | Number 2 | September 2001 | Pages 119-124
Technical Paper | doi.org/10.13182/FST01-A185
Articles are hosted by Taylor and Francis Online.
The earth generates its own magnetic field via a dynamo effect in a conducting fluid. The sun and some other stars also generate self-magnetic fields on large spatial scales and long timescales. Laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Could similar phenomena occur on intermediate spatial scales and timescales, such as in a laboratory plasma? Two questions are posed for consideration: (a) At high electromagnetic wave power input into a low-pressure gas could a significant self-magnetic field be generated? (b) If a self-magnetic field were generated, would it evolve toward a minimum-energy state? If the answers turned out to be affirmative, then the use of self-magnetic fields could have interesting applications.