ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Zhongliang Shi, Jerzy A. Szpunar, Shanqiang Wu
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 430-433
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1847
Articles are hosted by Taylor and Francis Online.
The progress of electroless deposition of palladium around the pore area at surface of porous stainless steel was recorded in order to understand membrane formation and to control the membrane quality. A bridge structure is formed during the membrane formation around the pore area of the substrate. The porous substrate was modified to be smooth using micro-or nano-size metal or metal oxide particles in order to make sure that palladium membrane is strongly supported by the substrate and as the result the membrane thickness can be further reduced. The experimental results obtained from hydrogen permeation through the palladium membranes having the thickness from 400 nm to 18 m demonstrate that these thin membranes are solid and they can be used at the temperature of 550°C and hydrogen pressure difference of 350 kPa. The proposed processing will allow optimizing the design and fabrication of thin palladium membranes for hydrogen separation.