ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hideo Kozima, Masayuki Ohta, Mitsutaka Fujii, Kunihito Arai, Hitoshi Kudoh
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 86-90
Technical Paper | doi.org/10.13182/FST01-A183
Articles are hosted by Taylor and Francis Online.
Experimental data showing generation of 4He from a Pd sheet-D2 gas system observed by E. Botta et al. are analyzed by the trapped neutron catalyzed fusion (TNCF) model. The proposed mechanism of 4He generation is not the direct d-d reaction but the reactions between the trapped neutron and a Pd isotope, n-46APd reactions, with a supplemental assumption, decrease of threshold energies for (n,) reactions of 46APd in solids. The arbitrary parameter nn, the density of the trapped neutron, of the model is determined to be ~1012 cm-3, which is consistent with values determined in analyses of data in various events in the cold fusion phenomenon.