ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
N. Bidica et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 346-349
Technical Paper | Tritium in Fission | doi.org/10.13182/FST08-A1828
Articles are hosted by Taylor and Francis Online.
In this paper we present a methodology for determination of tritium inventory in a tritium removal facility. The method proposed is based on the developing of computing models for accountancy of the mobile tritium inventory in the separation processes, of the stored tritium and of the trapped tritium inventory in the structure of the process system components. The configuration of the detritiation process is a combination of isotope catalytic exchange between water and hydrogen (LPCE) and the cryogenic distillation of hydrogen isotopes (CD). The computing model for tritium inventory in the LPCE process and the CD process will be developed basing on mass transfer coefficients in catalytic isotope exchange reactions and in dual-phase system (liquid-vapour) of hydrogen isotopes distillation process. Accounting of tritium inventory stored in metallic hydride will be based on in-bed calorimetry. Estimation of the trapped tritium inventory can be made by subtraction of the mobile and stored tritium inventories from the global tritium inventory of the plant area. Determinations of the global tritium inventory of the plant area will be made on a regular basis by measuring any tritium quantity entering or leaving the plant area. This methodology is intended to be applied to the Heavy Water Detritiation Pilot Plant from ICIT Rm. Valcea (Romania) and to the Cernavoda Tritium Removal Facility (which will be built in the next 5-7 years).