ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Weston M. Stacey, John Mandrekas, Robert Rubilar
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 66-78
Technical Paper | doi.org/10.13182/FST01-A181
Articles are hosted by Taylor and Francis Online.
Neutral atom transport in the edge region of fusion plasmas is characterized by extreme geometrical complexity, mean-free-paths that vary from millimetres to metres over short distances, and many orders of magnitude variation in atom density. We have proposed and are developing an interface current integral transport method as a more practical alternative to the Monte Carlo method, which is currently used for such calculations. This particular formulation of interface current methodology is described, the accuracy of the several approximations that are made in implementing the methodology are evaluated by comparison with Monte Carlo, and correction factors and extensions of the methodology, which improve accuracy, are presented. The results are formulated so as to be generally applicable to any neutral particle transport application.