ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Weston M. Stacey, John Mandrekas, Robert Rubilar
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 66-78
Technical Paper | doi.org/10.13182/FST01-A181
Articles are hosted by Taylor and Francis Online.
Neutral atom transport in the edge region of fusion plasmas is characterized by extreme geometrical complexity, mean-free-paths that vary from millimetres to metres over short distances, and many orders of magnitude variation in atom density. We have proposed and are developing an interface current integral transport method as a more practical alternative to the Monte Carlo method, which is currently used for such calculations. This particular formulation of interface current methodology is described, the accuracy of the several approximations that are made in implementing the methodology are evaluated by comparison with Monte Carlo, and correction factors and extensions of the methodology, which improve accuracy, are presented. The results are formulated so as to be generally applicable to any neutral particle transport application.