ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
A. B. Antoniazzi, C. S. Morton
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 219-222
Technical Paper | Waste Handling | doi.org/10.13182/FST08-A1799
Articles are hosted by Taylor and Francis Online.
Kinectrics and its predecessor company Ontario Hydro Research Division (a division of Ontario Hydro) had a fully operational tritium laboratory on site since the early 1980's. During those years numerous projects and experiments were undertaken using hydrogen and tritium for the most part. Metals with an affinity for hydrogen are commonly employed as scavengers of hydrogenic gases from process streams or as hydrogen storage mediums. The two most common of these metals used were depleted uranium and a zirconium-iron alloy (SAES St198). The break-up of Ontario Hydro through deregulation activities resulted in the building of a new, smaller, tritium laboratory and the decommissioning of the original tritium laboratory. Decommissioning activities resulted in the need to safely dispose of these reactive metals. Disposal of these metals is not straight forward. For safe, long term, disposal it has been decided to oxidize the metals in a controlled fashion. The oxidized beds, containing the metals, will be sent to a radioactive waste site for long term storage. Options for disposal of tritiated hydrogen gas are presented and discussed. This paper provides a disposal pathway for tritiated reactive metals and hydrogen thereby closing the loop in tritium handling.