ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
R. W. Margevicius
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 286-295
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17914
Articles are hosted by Taylor and Francis Online.
Beryllium is being considered as a possible capsule material for ignition targets for the National Ignition Facility. The material and machining specifications may ned to be highly restrictive, especially with regard to isotropic sound propagation. Beryllium, a hexagonal metal, displays directionally dependent sound speeds due to its anisotropic Young’s modulus. Crystallographic texture transfers this anisotropic sound speed to the polycrystal to varying degrees depending on the texture strength. From published values for the elastic compliances for Be, the value of E for single crystals was seen to vary with azimuthal angle from the c axis, from about 350 GPa parallel to c to about 290 GPa parallel to a. The longitudinal sound velocity varies with E, and experimentally measured velocities on single crystal Be are in good agreement with the derived values. The value of E for polycrystalline Be was calculated from simulated textures ranging from 1 MRD (multiples of random distribution), i.e., random, to 2, 4, 8, 20, and 40 MRD. The difference in sound speed from the fastest to the slowest direction for those textured materials were 0, 0.5, 1.0, 1.9, 3.8, and 5.4 percent respectively. Experimentally measured textures, processed by hot-pressing, swaging, and HIPping, were used to illustrate the effect of process variables on the resulting texture. These types of differences in sound speed have tremendous implications for the manner in which the beryllium used for ignition capsules for the National Ignition Facility is fabricated.