ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EnergySolutions confirms plans for new nuclear at Kewaunee
Utah-based EnergySolutions announced on January 15 that it has submitted a notice of intent to the Nuclear Regulatory Commission, confirming that the company plans to submit an application for a “major licensing action” for new nuclear generation at the closed Kewaunee nuclear power plant in Wisconsin. Applications for an early site permit, construction permit, or combined license are currently being evaluated, the company said.
Daniel L. Jassby, John A. Schmidt
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 52-55
Technical Paper | doi.org/10.13182/FST01-A179
Articles are hosted by Taylor and Francis Online.
The electrical energy requirements and costs of accelerator transmutation of waste (ATW) and fusion plants designed to transmute nuclides of fission wastes are compared. Both systems use the same blanket concept, but tritium breeding is taken into account for the fusion system. The ATW and fusion plants are found to have the same electrical energy requirement per available blanket neutron when the blanket coverage is comparable and the fusion energy gain is near breakeven (Q [approximately equal to] 1), but the fusion plant has only a fraction of the energy requirement when Q >> 1. If the blanket thermal energy is converted to electricity, the fusion plant and ATW have comparable net electrical energy outputs per available neutron when Q 1.5 and the blanket neutron multiplication is large.