ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
F.-Y. Tsai, D. R. Harding, S. H. Chen, T. N. Blanton, E. L. Alfonso
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 178-187
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17896
Articles are hosted by Taylor and Francis Online.
The processing conditions for vapor-depositing polyimide shells were studied to improve the surface finish, tensile properties, and gas permeability for the inertial confinement fusion application. The vapor-deposited (VDP) polyimide possessed distinct properties from solution-cast Kapton, resulting perhaps from its being physically or chemically crosslinked. The VDP polyimide was characterized to be semicrystalline with molecular chains parallel to the shell’s surface. Varying the imidization conditions, i.e., using different atmospheres, heating rates, and heating durations, increased the gas permeability while maintaining the Young’s modulus. Plastically deforming the shells under biaxial stress increased the permeability by up to 1000-fold, which could be reversed when heated to 350°C. Analyses using x-ray diffraction, infrared spectroscopy, and solubility tests indicated that these modifications in properties may have arisen from changes in the crystallinity, crosslinking, and molecular weight. The low-mode (2 to 20) surface roughness was reduced when the shells were slightly inflated; the high-mode roughness (coating-induced bumps) was increased when the substrate was heated to a temperature of 90°C to 140°C.