ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
R.P. Keatch, B. Lawrenson, G. Lyttle
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 174-177
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17895
Articles are hosted by Taylor and Francis Online.
The field of laser fusion involves the development of new technologies to aid in the fabrication of miniature components used in the target drive system. Current techniques range from cnc lathing with ultra-precise diamond turning to electroplating and mechanical punching. These techniques are labour intensive and are unsatisfactory for many applications. This paper outlines techniques adopted from the microelectronics industry, which have been developed to fabricate these components using a process known as Microengineering. This approach allows the mass-production of these devices with the diversity required to alter dimensions, profile, and material depending on the application 1,2. These microengineering processes have allowed a variety of materials to be investigated with various geometrical features and surface topographies. Using thick photosensitive polymers, combined with electroplating processes, complex 3-D structures have been fabricated in multiple stages.