ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
B. Bornschein
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 59-66
Technical Paper | Iter and Fusion | doi.org/10.13182/FST54-59
Articles are hosted by Taylor and Francis Online.
The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its endpoint. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay, simple nuclear properties and simple atomic structure. Tritium beta decay experiments have been performed for more than 60 years yielding in an upper limit of the electron neutrino mass of 2 eV/c2. The Karlsruhe Tritium Neutrino experiment (KATRIN) will improve the sensitivity on the neutrino mass by another order of magnitude. This article gives a short survey of 6 decades of tritium beta decay experiments and discusses the future steps.