ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
T. Eich, A. Werner
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 761-779
Technical Paper | doi.org/10.13182/FST08-A1733
Articles are hosted by Taylor and Francis Online.
The heat load due to plasma radiation is estimated for the plasma wall components of the stellarator Wendelstein 7-X (W7-X). A fully three-dimensional Monte Carlo code is used to simulate heating of first-wall components due to photon emission from the plasma. The plasma wall components can be described in a complex way with arbitrary shapes and orientation and flexible numerical representation. The volume radiation distribution is assumed to be described by poloidal symmetric and radially varying one-dimensional profiles aligned to the magnetic flux surfaces. A further example is given by a nonpoloidal symmetric radiation distribution following the five X point regions of the island divertor magnetic structure. Several realistic and artificial radiation profiles are chosen to investigate the local heat loads on an idealized plasma wall. The first detailed technical application of the code is the estimation of the local heat load on the Thomson scattering windows and on the inner surface of several vacuum ports of one half-module of the W7-X plasma vessel.