ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Kazunori Takahashi, Daiki Sato
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 395-397
doi.org/10.13182/FST13-A16966
Articles are hosted by Taylor and Francis Online.
High density helicon plasma is produced by a 13.56 MHz rf discharge under an IGBT-pulsed expanding and strong magnetic field, where the compact solenoid (inner diameter of 10 cm and 616 turn) is used for the formation of the magnetic field. The solenoid current is pulsed by the IGBT device with a pulse width of 20-40 msec. The solenoid current and the resultant magnetic field strength are proportional to the charging voltage to the capacitor. In the presently used solenoid and circuit, the maximum current and the resultant field strength are about 56 A and 3 kGauss, respectively. For the rf power of about 700 W, the high density plasma of about 4 × 1012 cm-3 is achieved. Above the field strength of about 1.6 kGauss, the source plasma density is constant, while the downstream density increases due to the suppression of the radial loss of the plasma particles.