ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
H. T. Lee, Y. Ohtsuka, Y. Ueda, K. Sugiyama, E. Markina, N. Yoshida
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 233-236
doi.org/10.13182/FST13-A16913
Articles are hosted by Taylor and Francis Online.
The structure and concentration distribution of He, H, and D in the ion implanted zone following simultaneous He-D irradiation in W was characterized. A shift in He bubble size from nanometer to tens of nanometers was observed between 800 K < T < 1000 K. The bubble field was found to extend to depths of 30-40 nm with mean concentrations of 4-5 at.%.. An order of magnitude increase in He trapping was observed at 800 K when the ion energy was increased from 0.3 to 1.0 keV. Depth profiles of the trapped D at 500 K indicatea marked decrease in the trapped amount coinciding with the He bubble layer. Conversely, enrichment in hydrogen concentration was observed. One hydrogen atom was found to trap in ratio with ~6 He atoms. Such preferential trapping of hydrogen appears to be an important process in the reduction of D diffusion into W due to He effects.