ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Y. Yoshimura, T. Akiyama, M. Isobe, A. Shimizu, C. Suzuki, C. Takahashi, K. Nagaoka, S. Nishimura, T. Minami, K. Matsuoka, S. Okamura, CHS Group, S. Kubo, T. Shimozuma, H. Igami, T. Notake, T. Mutoh
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 54-61
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1652
Articles are hosted by Taylor and Francis Online.
Second-harmonic electron cyclotron (EC) current drive experiments have been performed in the Compact Helical System (CHS). The driven current changes its direction according to the change of the EC-wave beam direction in agreement with an expectation from the Fisch and Boozer theory in the case of low-field-side injection of EC waves. The EC-driven current varies as a function of the magnetic axis position of CHS plasmas. The cause of the variation was experimentally investigated by a magnetic field scan. Setting the second-harmonic resonance layer near the magnetic axis was favorable to maximize the total EC-driven current. The main cause of the dependence of the driven current on the magnetic axis position is attributed to the change of distribution of the magnetic field along the beam path due to the change of the beam direction to aim at the magnetic axis in the three-dimensional helical magnetic field of the CHS.