ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
T. Takamatsu, T. Fujimoto, K. Masuda, K. Yoshikawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1114-1118
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1647
Articles are hosted by Taylor and Francis Online.
A new Inertial Electrostatic Confinement (IEC) fusion device has been manufactured as a compact neutron source. This device consists of double jacket chambers to provide sufficient water cooling, having the diameters of inner and outer chambers of, respectively, 20 cm and 30 cm. The effective water-cooling enabled the IEC device to operate at high cathode current of more than 80 mA. A target neutron yield of 1 × 107 has been achieved for cathode voltage of 80 kV and (cathode) current of 80 mA. The water jacket of a 5 cm width was designed as well to assure the sufficient reflection of 2.45 MeV D-D neutrons downward, where a thinner 1 cm thick water jacket is installed at the bottom. This non-uniformity of water jacket thickness resulted in increased neutron flux downward.