ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Yoshiharu Nakamura
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 378-384
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16445
Articles are hosted by Taylor and Francis Online.
An electron swarm study using molecular gas-rare gas mixtures is briefly reviewed, and the advantage of using these mixtures to evaluate inelastic electron collision cross-section data for molecules through electron swarm study is explained. This advantage also suggests a new procedure for deriving a consistent set of electron collision cross sections for molecules by using electron swarm data measured in pure molecular gas and in the molecular gas-rare gas mixtures alternately. The procedure is detailed by using an example of C2H4. The derived cross-section set for C2H4 covers the energy range where a conventional electron beam experiment is not practical and can be crucial for the quantitative modeling of relevant plasmas.