ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
David R. Boris, Zhenqiang Ma, Hao-Chih Yuan, Robert P. Ashley, John F. Santarius, Gerald L. Kulcinski, Clayton Dickerson, Todd Allen
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1066-1069
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1637
Articles are hosted by Taylor and Francis Online.
Using a single junction PIN (p-type, intrinsic, n-type) diode, made of silicon, and doped with boron and phosphorus, high energy protons have been converted to electricity, through ionization from electronic stopping in the silicon, at an efficiency of 0.2%. A simulation of 3.02 MeV D-D protons has been performed, using a 3 MeV linear accelerator. Proton fluxes of ~3 × 1010 protonscm-2×s-1 were incident on a PIN diode with 0.7 cm2 of surface area facing the incident protons. Losses in efficiency as a function of proton fluence are compared with dpa (displacements per atom) rates calculated using the Monte Carlo ion transport code TRIM (Transport and Ranges of Ions in Matter).