ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Greg C. Randall, James Vecchio, Jack Knipping, Don Wall, Tane Remington, Paul Fitzsimmons, Matthew Vu, Emilio M. Giraldez, Brent E. Blue, Michael Farrell, Abbas Nikroo
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 274-281
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST63-2-274
Articles are hosted by Taylor and Francis Online.
Rippled metal foils are currently sought for high-strain-rate material strength studies at laser facilities. Because these metals typically cannot be diamond turned, we employ a microcoining process to imprint the [approximately]5-m-deep by [approximately]50-m-long ripples into the metal surface. This work details recent process developments to fabricate these rippled metal targets, specifically for iron and tantalum. The process consists of nitriding a steel die, diamond turning the die, and then pressing the die into a polished metal foil of choice. We show: advantages of deeper-nitrided dies, improved foil thickness uniformity and characterization, variation in coining stress over different materials, pattern quality characterization, bowing reduction, and patterning of multimode ripples.