ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Jason Oakley, Mark Anderson, Ed Marriott, Jesse Gudmundson, Kumar Sridharan, Virginia Vigil, Gary Rochau, Riccardo Bonazza
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 943-947
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1615
Articles are hosted by Taylor and Francis Online.
A liquid pool, with and without void fractions, was subjected to dynamic compression testing in a vertical shock tube to model the bubbly-pool concept being considered for use in an inertial fusion energy reactor. Water and oil were used to model the FliBe coolant that collects at the bottom of the chamber and serves as first wall protection at that location. The experiments (shock strengths M = 1.4, 2.0, and 3.1) were conducted in atmospheric pressure argon, and argon was bubbled through the liquid to achieve void fractions of 5-15% in the 30.4 cm deep pool. Pressure measurements were taken in the pool at intervals of 2.54 cm to measure the effect of void fraction on the pool compression and the compression wave traveling through the liquid. The presence of the gas voids in the liquid had a strong effect on the dynamic pressure loading but did not reduce the shock impulse significantly at the low and intermediate Mach numbers, but did exhibit a mitigating effect at the higher shock strength. A very high void fraction foam was also studied that resulted in a 22% reduction of the shock wave impulse.