ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Viatcheslav V. Anisimov, Vladimir A. Arkhangel'sky, Nikolay S. Ganchuk, Arkady A. Yukhimchuk, Emanuela Cavalleri, Fedor I. Karmanov, Alexander Yu. Konobeyev, Victor I. Slobodtchouk, Lioudmila N. Latysheva, Igor A. Pshenichnov, Leonid I. Ponomarev, Marcello Vecchi
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 198-208
Technical Paper | doi.org/10.13182/FST01-A161
Articles are hosted by Taylor and Francis Online.
The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion (CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 CF events/muon, it can produce up to 1017n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 1014 n/cm2s-1 can be achieved in the test volume of ~2.5 l with an irradiated surface of ~350 cm2. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.